US009317521B1

a2z United States Patent (10) Patent No.: US 9,317,521 B1
Bent et al. (45) Date of Patent: *Apr. 19, 2016
(54) CLOUD OBJECT STORE FOR 2013/0159364 Al* 6/2013 Grider GO6F 17/30224
CHECKPOINTS OF HIGH PERFORMANCE 0130227194 AL 82013 K | 707/826
COMPUTING APPLICATIONS USING 2013/0282797 Al* 10/2013 C:rrirslaneta GOGF 17/30887
DECOUPLING MIDDLEWARE 709/203
(71) Applicants: EMC Corporation, Hopkinton, MA OTHER PUBLICATIONS
(US); Los Alamos National Security,
LLC, Los Alamos, NM (US) Bentetal., PLFS: A Checkpoint Filesystem for Parallel Applications,
SCO09 Nov. 14-20, Portland, Oregon, pp. 1-12.
(72) Inventors: John M. Bent, Los Alamos, NM (US); “Amazon S3 Tools: Command Line S3 Client Software and S3
Sorin Faibish, Newton, MA (US); Gary Backup”, downloaded on Sep. 5, 2014 from http://s3tools.org/usage.
Grider, Los Alamos, NM (US) “GET Object—Amazon Simple Storage Service”, downloaded on
Sep. 5, 2014 from http://docs.aws.amazon.com/AmazonS3/latest/
(73) Assignees: EMC Corporation, Hopkinton, MA API/RESTObjectGET html.
(US); Los Alamos National Security, ‘S‘PUTSO%elc;AHw}Zlgg /S/(iimple Storage Sewigﬂwnlggﬂfc: 03
€p. 2, rom J//docCs.aws.amazon.co: Z0n ates!
LLC, Los Alamos, NM (US) API/RESTObjectPUT.html.
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Y
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis- Primary Examiner — San?l Al Hashemi .
claimer. (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP
(21) Appl. No.: 13/730,058 (57) ABSTRACT
(22) Filed: Dec. 28, 2012 Cloud object storage is enabled for checkpoints of high per-
formance computing applications using a middleware pro-
(51) Int. Cl. cess. A plurality of files, such as checkpoint files, generated
GO6F 17/30 (2006.01) by a plurality of processes in a parallel computing system are
(52) US.CL stored by obtaining said plurality of files from said parallel
CPC i GO6F 17/30194 (2013.01) computing system; converting said plurality of files to objects
(58) Field of Classification Search using a log structured file system middleware process; and
USPC S 707/665, 649, 803, 826 providing said objects for storage in a cloud object storage
See application file for complete search history. system. The plurality of processes may run, for example, ona
. plurality of compute nodes. The log structured file system
(56) References Cited middleware process may be embodied, for example, as a
U.S. PATENT DOCUMENTS Parallel Log-Struct}lred File System (PLFS). The log struc-
tured file system middleware process optionally executes on
2008/0282242 Al* 11/2008 Dillenberger GO6F 9/5072 @ burst buffer node.
718/1
2012/0072465 Al* 3/2012 McGowan GOGF 17/30289
707/803 25 Claims, 6 Drawing Sheets

00

720
| COMPLEX PARALLEL 1/0 |
PR
B0—APIF 30
| 1/0 TRANSFORMATION |
| 730
| ABSTRACT STORAGE INTERFACE |
| 5501 | [s-2 | 503 //"T"‘\\
st | [esxyo | [wesipo | /] sy [
]] | / | \
]] I / I \‘
[pves ibc et | [ostx e APL| [iofhts, g | [s3 e = 3404
301 [Tan-2 Uaio-31 |
A]
\ cLOUD /
‘ PVFS S | ‘uoumm rs| | HOFS FS | \ |_sowe_[7%
\ 350 \ 360 i N o

~~~~~



U.S. Patent Apr. 19,2016 Sheet 1 of 6 US 9,317,521 B1

COMPLEX
PARALLEL 1/0
—120-N

/

PRIOR ART

FIG.

COMPLEX
PARALLEL 1/0
—120-1




U.S. Patent Apr. 19,2016 Sheet 2 of 6 US 9,317,521 B1

COMPLEX PARALLEL
FILE-BASED 1/0
OBJECT-BASED 1/0

—~—220-N
~—240-N

I/0 CONVERSION MIDDLEWARE |~ 230-N

250

Lol
(=4
(=]
—_
(V¢
f—
(=)
Ll
- J
o0
o
=
e |
(=]
—
(&)

COMPLEX PARALLEL
FILE-BASED 1/0
OBJECT-BASED 1/0

~220-1
— 240~1

I/0 CONVERSION MIDDLEWARE [~ 230-1




US 9,317,521 B1

Sheet 3 of 6

Apr. 19,2016

U.S. Patent

p — N 0L£ 095 08
085 —~— \ §4 S40H S4 Q3INNON $4 SiMd
7 anoT) \
[} \
] \
__ \E=0¥E =005 y 1-0%E
7-078 +—  Idv €S [ | fwal ‘sypylay Idv 291 XISOd IdY 991 SiAd
__, \.
/ \
7-05¢ bﬂ 0/1 €S \\ 0/1 SitH 0/1 XIS0d 0/1 SiAd
el st 2055 -0s5 S
JOVAMIINT FOVHOLS LOVHISAY
ozs S
NOLLYNHO4SNVAL 0/1
7
o S}~ 052
0/1 TITIVAVd XI1dNO)
0zz/

00z

& O1d



U.S. Patent Apr. 19,2016 Sheet 4 of 6 US 9,317,521 B1

FIG. 44 400

/ L
* 10Store: A pure virtual class for 10 manipulation of a backend store
%
* return values:
* — functions that return signed ints: 0 =success, otherwise —err
* — otherwise the success/-err info is returned as a param
*
¥

this also applies for functions in the I0SHandle and I0SDirHandle classes.
Y/
class 10Store {
public:
virtual int Access(const char *bpath, int mode)=0;
virtual int Chown(const char *bpath, uid_t owner, gid_t group)=0;
virtual int Chmod(const char *bpath, mode_t mode)=0;
int Close(I0SHandle *handle); /* inlined below */
int Closedir(class 10SDirHandle *dhandle); /* inlined below */
virtual int Lchown(const char *bpath, uid_t owner, gid_t group)=0;
virtual int Lstut(const char *bpath, struct stat "sb)=0;
virtual int Mkdir(const char *bpath, mode_t mode)=0;
/* this open takes args that are very POSIX specific */
virtual I0SHandle *Open(const char *bpath, int flags, mode_t, int &ret)=0;
virtual 10SDirHandle *Opendir{const char *bpath, int &ret)=0; .
virtual int Rename(const char *frombpath, const char *tobpath)=0;
virtual int Rmdir(const char *bpath)=0;
virtual int Stat(const char *bpath, struct stat *sb)=0;
virtual int Statvfs( const char *path, struct statvfs* stbuf )=0;
virtual int Symlink(const char *bpathi, const char *bpath2)=0;
virtual ssize_t Readlink(const char *bpath, char *buf, size_t bufsize)=0;
virtual int Truncate (constchar *bpath, off_t length)=0;
virtual int Unlink{const char *bpath)=0;
virtual int Utime(const char *bpath, const struct utimbuf *times)=0;
virtual ~[0Store() § }

/* two simple compat APIs that can be inlined by the compiler */
class I0SHandle *Creat(const char *bpath, mode_t mode, int &ret) §
return{Open(bpath, 0_CREAT|O_TRUNC|O_WRONLY, mode, ret));

class 10SHandle *Open(const char *bpath, int flags, int &ret) §
return{Open(bpath, flags, 0777, ret));




U.S. Patent Apr. 19,2016 Sheet 5 of 6 US 9,317,521 B1

FIG. 4B

¥

* [0SHandle: iostore open file handle. this is the iostore version
* of the posix int file descriptor. all functions that operate on
* file descriptors belong here.
¥
/
class I0SHandle
private:
virtual int Close(void)=0;
friend int 10Store::Close{I0SHandle *handle);

public:
virtual int Fstat{struct stat *sb)=0; >ﬂ
virtual int Fsync(void)=0;

virtual int Ftruncate(off_t length)=0;

virtual int GetDataBuf(void **bufp, size_t length)=0;

virtual ssize_t Pread(void *buf, size_t nbytes, off_t offset)=0;
virtual ssize_t Pwrite(const void *buf, size_t nbytes, off_t offset)=0;
virtual ssize_t Read(void *buf, size_t offset)=0;

virtual int ReleaseDataBuf(void *buf, size_t length)=0;

virtual off_t Size(void)=0;

virtual ssize_t Write{const void *buf, size_t nbytes)=0;

*

* [0SDirHandle: iostore open directory handle. this is the iostore
* version ofa DIR*.

Y/
class 108DirHandle |
private: b 475
virtual int Closedir{void)=0;
friend int I0Store::Closedir(I0SDirHandle *handle);

public:
virtual int Readdir_r(struct dirent *, struct dirent **)=0;
5




U.S. Patent Apr. 19,2016 Sheet 6 of 6

FIG. 5
300

£ 501-1
PROCESSING DEVICE
(512

MEMORY

@[51

PROCESSOR

@[51

NETWORK
INTERFACE

504

o

~

US 9,317,521 B1

£501-2

PROCESSING

DEVICE

£ 501-3
PROCESSING
DEVICE

© [ 501-K

PROCESSING

DEVICE




US 9,317,521 Bl

1
CLOUD OBJECT STORE FOR
CHECKPOINTS OF HIGH PERFORMANCE
COMPUTING APPLICATIONS USING
DECOUPLING MIDDLEWARE

STATEMENT OF GOVERNMENT RIGHTS

This invention was made under a Cooperative Research
and Development Agreement between EMC Corporation and
Los Alamos National Security, LL.C. The United States gov-
ernment has rights in this invention pursuant to Contract No.
DE-AC52-06NA25396 between the United States Depart-
ment of Energy and Los Alamos National Security, LL.C for
the operation of Los Alamos National Laboratory.

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is related to U.S. patent application
Ser. No. 13/730,097, filed Dec. 28, 2012, entitled “Cloud
Object Store for Archive Storage of High Performance Com-
puting Data Using Decoupling Middleware,” now U.S. Pat.
No. 9,069,778.

FIELD

The field relates generally to data storage, and more par-
ticularly, to cloud storage for high performance computing
applications.

BACKGROUND

High-performance computing (HPC) techniques are used
in many industries and applications for implementing com-
putationally intensive models or simulations. For example,
the Department of Energy uses a large number of distributed
compute nodes tightly coupled into a supercomputer to model
physics experiments. In the oil and gas industry, parallel
computing techniques are often used for computing geologi-
cal models that help predict the location of natural resources.

High-performance computing applications typically
require that simulation checkpoints are stored with extremely
high parallel bandwidth. A small number of highly complex
parallel file systems are typically employed to store the
checkpoints. Such file systems are not economical in the
sense that they need to solve challenging problems for a
relatively small market.

An increasing number of companies and other enterprises
are reducing their costs by migrating portions of their infor-
mation technology infrastructure to cloud service providers.
For example, virtual data centers and other types of systems
comprising distributed virtual infrastructure are coming into
widespread use.

Cloud object storage amortizes the software development
and hardware infrastructure costs across a much larger num-
ber of parties, thereby reducing the cost significantly. In
cloud-based information processing systems, enterprises in
effect become tenants of the cloud service providers. How-
ever, by relinquishing control over their information technol-
ogy resources, these cloud tenants expose themselves to addi-
tional potential security threats. For example, a given tenant
may be inadvertently sharing physical hardware resources of
a cloud computing environment with other tenants that could
be competitors or attackers. Cloud storage systems have
addressed such security concerns with multi-tenancy mecha-
nisms.

15

25

30

35

40

45

50

55

60

65

2

A need exists for improved storage of checkpoints for
high-performance computing applications.

SUMMARY

Tustrative embodiments of the present invention provide
cloud object storage for checkpoints of high performance
computing applications using a middleware process. Accord-
ing to one aspect of the invention, a method is provided for
storing a plurality of files generated by a plurality of processes
in a parallel computing system, by obtaining said plurality of
files from said parallel computing system; converting said
plurality of files to objects using a log structured file system
middleware process; and providing said objects for storage in
a cloud object storage system.

The plurality of processes may run, for example, on a
plurality of compute nodes. The plurality of files may com-
prise, for example, checkpoint files generated by the plurality
of compute nodes. The log structured file system middleware
process may be embodied, for example, as a Parallel Log-
Structured File System (PLFS). The log structured file system
middleware process optionally executes on a burst buffer
node.

Advantageously, illustrative embodiments of the invention
provide techniques for storing checkpoint files in a parallel
computing system using a middleware process. These and
other features and advantages of the present invention will
become more readily apparent from the accompanying draw-
ings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary conventional approach for
storing checkpoints in a high performance computing appli-
cation;

FIG. 2 illustrates a system for the storage of checkpoints
generated by one or more high performance computing appli-
cations using cloud storage, in accordance with an aspect of
the present invention;

FIG. 3 illustrates the checkpoint storage of FIG. 2 in further
detail,

FIGS. 4A and 4B, collectively, illustrate exemplary code
for an Abstract Storage Interface used to transform complex
parallel file-based input/output for storage on a storage sys-
tem; and

FIG. 5 illustrates an exemplary processing platform in
which aspects of the present invention can be employed.

DETAILED DESCRIPTION

Tustrative embodiments of the present invention will be
described herein with reference to exemplary cloud storage
systems and associated computers, servers, storage devices
and other processing devices. [t is to be appreciated, however,
that the invention is not restricted to use with the particular
illustrative system and device configurations shown. Accord-
ingly, the term “cloud storage system” as used herein is
intended to be broadly construed, so as to encompass, for
example, private or public cloud systems distributed over
multiple geographically-dispersed locations, as well as other
types of storage systems comprising multiple physical sites.

According to one aspect of the invention, cloud object
storage is employed for storing checkpoints of high perfor-
mance computing applications using decoupling middle-
ware. Aspects of the present invention recognize that existing
cloud object storage application programming interfaces
(APIs) are not sufficient for the highly complex parallel 10



US 9,317,521 Bl

3

workloads in HPC. Therefore, a cloud object storage API is
coupled with software middleware that transparently con-
verts complex parallel Input/Output (I/O) file workloads into
object-based workloads for storage in a cloud storage system.

FIG. 1 illustrates an exemplary conventional approach 100
for storing checkpoints in a high performance computing
application. As shown in FIG. 1, one or more high perfor-
mance computing applications executing on one or more
compute node sites 110-1 through 110-N generate complex
parallel I/O 120-1 through 120-N, such as a plurality of
checkpoint files. The compute node(s) 110 execute a plurality
ofjobs 115 for one or more clients (not shown) in parallel. The
complex parallel /O 120 is stored in a corresponding parallel
file system 130-1 through 130-N associated with the high
performance computing application 110-1 through 110-N.

As indicated above, the parallel file systems 130 need to
solve challenging problems for a relatively small market.
Thus, aspects of the invention employ cloud object storage to
store checkpoints of high performance computing applica-
tions, such as the high performance computing applications
executing on the sites 110-1 through 110-N of FIG. 1, using a
decoupled middleware process.

FIG. 2 illustrates a system 200 for the storage of check-
points generated by one or more high performance computing
applications using cloud storage, in accordance with an
aspect of the present invention. As shown in FIG. 2, one or
more high performance computing applications executing on
one or more compute node sites 210-1 through 210-N gener-
ate complex parallel file-based /O 220-1 through 220-N,
such as a plurality of checkpoint files, in a similar manner to
FIG. 1.

As shownin FIG. 2, the complex parallel file-based 1/0 220
is processed by a corresponding I/O Conversion Middleware
process 230-1 through 230-N. The /O Conversion Middle-
ware processes 230 comprise a log structured file system
middleware process, such as a Parallel Log-Structured File
System (PLFS), as modified herein to provide the features
and functions of the present invention. See, for example, John
Bent et al., “PLFS: A Checkpoint Filesystem for Parallel
Applications,” Association for Computing Machinery, SCO9
(November 2009), incorporated by reference herein. 1/0
Conversion Middleware processes 230 are discussed further
below in conjunction with FIG. 3.

The log structured file system middleware process 230 can
execute, for example, on a burst buffer node or on the corre-
sponding compute node site 210. The burst buffer node can be
embodied, for example, as an Active Burst Buffer Appliance
(ABBA), commerically available from Los Alamos National
Labs (LANL) and EMC Corporation. A burst buffer hardware
node ensures that checkpoint performance is not sacrificed in
the case where cloud storage might be slower than existing
parallel file systems.

As shown in FIG. 2, the 1/O conversion middleware pro-
cess 230 converts the complex parallel file-based [/0 220 to a
corresponding object-based 1/O 240-1 through 240-N. The
object-based I/O 240 is provided to a cloud storage applica-
tion programming interface (API) of a cloud object storage
system 250. In one exemplary embodiment, the I/O conver-
sion middleware process 230 comprises a software module
for providing the object-based 1/0 240 to the cloud storage
application programming interface (API).

FIG. 3 illustrates the checkpoint storage 200 of FIG. 2 in
further detail. As shown in FIG. 3, the complex parallel file-
based I/O 220 is processed by a corresponding I/O Conver-
sion Middleware process 230. The exemplary /O Conversion
Middleware process 230 is embodied as a Parallel Log-Struc-

25

30

35

40

45

55

4

tured File System, as modified herein to provide the features
and functions of the present invention.

The exemplary 1/O Conversion Middleware process 230
comprises an 1/O transformation stage 310 and an Abstract
Storage Interface 320 to a plurality of /O formats. The exem-
plary abstract storage interface 320 performs file /O and
directory operations. The exemplary abstract storage inter-
face 320 can be implemented as a Virtual C++ class.

For an exemplary set of I/O formats, the exemplary
Abstract Storage Interface 320 supports a Parallel Virtual File
System (PVES) 1/0 format module 330-1, a Portable Oper-
ating System Interface (POSIX) I/O format module 330-2, a
Hadoop Distributed File System (HDFS) I/O format module
330-3 and a Simple Storage Service (S3) I/O format module
330-4 (provided by Amazon Web Services). It is noted that
existing PLFS file systems provide an Abstract Storage Inter-
face 320 to a PVES I/O format 330-1, a POSIX 1/0O format
330-2 and an HDFS I/O format 330-3. An existing PLFS file
system is extended as described herein to provide an Abstract
Storage Interface 320 to an S3 I/O format module 330-4. It is
noted that while aspects of the invention are described in
conjunction with an exemplary S3 cloud storage protocol,
other cloud storage protocols could be employed, as would be
apparent to a person of ordinary skill in the art.

Each exemplary format 330-1 through 330-4 communi-
cates with an API 340-1 through 340-3 of the associated file
system, such as the PVFS file system 350, Mounted file
system 360 (for POSIX) and HDEFS file system 370. In the
case of a cloud storage system 380, the S3 I/O format 330-4
communicates with an S3 API 340-4.

Since most cloud storage protocols use objects and not
files, the exemplary 1/O Conversion Middleware process 230
converts a file interface into an object interface. For example,
the exemplary /O Conversion Middleware process 230 con-
verts files to a plurality of Get-Put operations on a set of
objects. In an object-based cloud storage system, such as the
Amazon S3 system referenced above, a “put” command
passes data for an entire object, and a “get” command
retrieves the data for an entire object. See, for example, Ama-
zon S3 Tools: Command Line S3 Client Software and S3
Backup (downloadable from http://s3tools.org/usage).

In addition, since a number of cloud storage protocols do
not provide directory operations, the exemplary S3 /O for-
mat module 330-4 of the /O Conversion Middleware process
230 can handle directory operations by returning an error on
directory operations; building a namespace in its own private
object; and/or embedding full directory paths into the name of
each file/object.

Further, since a number of cloud storage protocols do not
allow partial file I/O, and entire objects must be read and
written, the exemplary S3 I/O format module 330-4 of the I/O
Conversion Middleware process 230 can handle this inter-
nally by buffering entire objects. The abstract storage inter-
face 320 will issue partial read and write operations, and the
S3 I/O format module 330-4 will apply partial read and write
operations to the buffer. The S3 I/O format module 330-4 will
flush an entire object upon a write close and will fetch an
entire object upon a read open.

FIGS. 4A and 4B, collectively, illustrate exemplary code
400, 450, 475 for an Abstract Storage Interface 320 used to
transform the complex parallel file-based 1/0O 220 of FIG. 2
for storage in a storage system, such as the cloud object store
380 of FIG. 3. As shown in FIG. 4A, exemplary code 400
provides an abstract interface to a cloud storage system. As
shown in FIG. 4B, exemplary code 450 provides an abstract
interface to a storage object/file and exemplary code 475
provides an abstract interface to a storage directory.



US 9,317,521 Bl

5

FIG. 5 illustrates an exemplary processing platform in
which aspects of the present invention can be employed. The
exemplary processing platform 500 comprises a plurality of
processing devices, denoted 501-1, 501-2, 501-3, . .. 501-K,
that communicate with one another over a network 504. The
network 504 may comprise any type of network, such as a
WAN, a LAN, a satellite network, a telephone or cable net-
work, or various portions or combinations of these and other
types of networks.

The processing device 501-1 in the processing platform
500 comprises a processor 510 coupled to a memory 512. The
processor 510 may comprise a microprocessor, a microcon-
troller, an application-specific integrated circuit (ASIC), a
field-programmable gate array (FPGA) or other type of pro-
cessing circuitry, as well as portions or combinations of such
circuitry elements, and the memory 512, which may be
viewed as an example of a “computer program product” hav-
ing executable computer program code embodied therein,
may comprise random access memory (RAM), read-only
memory (ROM) or other types of memory, in any combina-
tion.

Also included in the processing device 501-1 is network
interface circuitry 514, which is used to interface the process-
ing device with the network 504 and other system compo-
nents, and may comprise conventional transceivers.

The other processing devices 501 of the processing plat-
form 500 are assumed to be configured in a manner similar to
that shown for processing device 501-1 in the figure.

Again, the particular processing platform 500 shown in
FIG. 5 is presented by way of example only, and system 200
may include additional or alternative processing platforms, as
well as numerous distinct processing platforms in any com-
bination, with each such platform comprising one or more
computers, servers, storage devices or other processing
devices.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations and other alternative
embodiments may be used. For example, the techniques are
applicable to a wide variety of other types of devices and
systems that can benefit from the replicated file system syn-
chronization techniques disclosed herein. Also, the particular
configuration of system and device elements shown in FIGS.
1-5 can be varied in other embodiments. Moreover, the vari-
ous simplifying assumptions made above in the course of
describing the illustrative embodiments should also be
viewed as exemplary rather than as requirements or limita-
tions of the invention. Numerous other alternative embodi-
ments within the scope of the appended claims will be readily
apparent to those skilled in the art.

What is claimed is:

1. A method for storing a plurality of files generated by a
plurality of processes in a parallel computing system, com-
prising the steps of:

obtaining said plurality of files from said parallel comput-

ing system;

converting said plurality of files to objects using a log

structured file system middleware process; and
providing said objects for storage in a cloud object storage
system using a software interface module of said log
structured file system middleware process, wherein said
software interface module communicates with a cloud
storage application programming interface (API) of said
cloud object storage system, wherein said log structured
file system middleware process is an input-output (I/O)
conversion middleware process between said parallel
computing system and said cloud object storage system.

25

35

40

45

50

55

60

6

2. The method of claim 1, wherein said plurality of pro-
cesses are running on a plurality of compute nodes.

3. The method of claim 1, wherein said plurality of files
comprise checkpoint files generated by said plurality of com-
pute nodes.

4. The method of claim 1, wherein said log structured file
system middleware process comprises a Parallel Log-Struc-
tured File System (PLFS).

5. The method of claim 1, wherein said log structured file
system middleware process executes on a burst buffer node.

6. The method of claim 1, wherein said step of providing
said objects for storage in said cloud object storage system
further comprises the step of providing said objects to said
cloud storage API of said cloud object storage system.

7. The method of claim 6, wherein said log structured file
system middleware process comprises said software interface
module for providing said objects for storage to said cloud
storage API.

8. The method of claim 7, wherein said software interface
module embeds one or more directory paths into a name of
each of said objects provided to said cloud storage API.

9. The method of claim 7, wherein said log structured file
system middleware process comprises a software module for
generating a namespace of said plurality of files.

10. The method of claim 1, wherein said step of converting
said plurality of files to objects further comprises converting
said plurality of files to a plurality of one or more of get
operations and put operations on said set of objects, wherein
a put operation passes data for an entire object, and a get
operation retrieves data for an entire object.

11. The method of claim 1, wherein said log structured file
system middleware process processes partial file input/output
operations by buffering entire objects in one or more buffers
and applying one or more of partial read and write commands
using said one or more buffers.

12. A tangible machine-readable recordable storage
medium for storing a plurality of files generated by a plurality
of processes in a parallel computing system, wherein one or
more software programs when executed by one or more pro-
cessing devices implement the following steps:

obtaining said plurality of files from said parallel comput-

ing system;

converting said plurality of files to objects using a log

structured file system middleware process; and
providing said objects for storage in a cloud object storage
system using a software interface module of said log
structured file system middleware process, wherein said
software interface module communicates with a cloud
storage application programming interface (API) of said
cloud object storage system, wherein said log structured
file system middleware process is an input-output (I/O)
conversion middleware process between said parallel
computing system and said cloud object storage system.

13. An apparatus for storing a plurality of files generated by
a plurality of processes in a parallel computing system, com-
prising:

a memory; and

at least one hardware device operatively coupled to the

memory and configured to:

obtain said plurality of files;

convert said plurality of files to objects using a log struc-

tured file system middleware process; and

provide said objects for storage in a cloud object storage

system using a software interface module of said log
structured file system middleware process, wherein said
software interface module communicates with a cloud
storage application programming interface (API) of said



US 9,317,521 Bl

7

cloud object storage system, wherein said log structured
file system middleware process is an input-output (I/O)
conversion middleware process between said parallel
computing system and said cloud object storage system.

14. The apparatus of claim 13, wherein said plurality of
processes are running on a plurality of compute nodes.

15. The apparatus of claim 13, wherein said plurality of
files comprise checkpoint files generated by said plurality of
compute nodes.

16. The apparatus of claim 13, wherein said log structured
file system middleware process comprises a Parallel Log-
Structured File System (PLFS).

17. The apparatus of claim 13, wherein said log structured
file system middleware process executes on a burst buffer
node.

18. The apparatus of claim 13, wherein said objects are
provided for storage in said cloud object storage system by
providing said objects to said cloud storage API of said cloud
object storage system.

19. The apparatus of claim 13, wherein said plurality of
files are converted to objects by converting said plurality of
files to a plurality of one or more of get operations and put
operations on said set of objects, wherein a put operation
passes data for an entire object, and a get operation retrieves
data for an entire object.

20. The apparatus of claim 13, wherein said log structured
file system middleware process processes partial file input/
output operations by buffering entire objects in one or more
buffers and applying one or more of partial read and write
commands using said one or more buffers.

15

20

8

21. A data storage system for storing a plurality of files
generated by a plurality of processes in a parallel computing
system, comprising:

a processing unit for obtaining said plurality of files, con-
verting said plurality of files to objects using a log struc-
tured file system middleware process and providing said
objects for storage in a cloud object storage system using
a software interface module of said log structured file
system middleware process, wherein said software
interface module communicates with a cloud storage
application programming interface (API) of said cloud
object storage system, wherein said log structured file
system middleware process is an input-output (I/O) con-
version middleware process between said parallel com-
puting system and said cloud object storage system; and

said cloud object storage system for storing said objects.

22. The data storage system of claim 21, wherein said
plurality of processes are running on a plurality of compute
nodes.

23. The data storage system of claim 21, wherein said
plurality of files comprise checkpoint files generated by said
plurality of compute nodes.

24. The data storage system of claim 21, wherein said log
structured file system middleware process comprises a Paral-
lel Log-Structured File System (PLFS).

25. The data storage system of claim 21, wherein said log
structured file system middleware process executes on a burst
buffer node.



